Text Protocol Driver Page 1/38

Text Protocol Driver

Stefaan Van Cauwenberge

Version 1.0

*¢

© Stefaan Van Cauwenberge Page 1/38

Text Protocol Driver Page 2/38

Table of Contents

IO 110 o [FTox (o] o PP UPRROTRRTIS 4
IO N oo 0 1 0 o [YT PR OPRPURRI 4
2. COMPONENES ..tttk ettt e a e e et a4t e oo e b bt e ekt e e ekt e e n et e e st e e n e 4
2.1, ATCRITECTUIE OVEIVIBW ..ottt eee ettt e e e st e e et e e et e e e s e e nnt e e e snteeennseeeanres 4
2.1 1 HIGR TBVEL ... 4
2.1.2. SNIM SUDSCIIDET ... eveee ittt e et e et e e nrt e e ent e e snbe e e anteeeennes 5
2.1.3. SNIM PUBIISNET ...ttt e et e et e e nnes 6
N0 T N o1 RSP STRR 6
N A T 11 -1 1= SRS 7

2.2. GENEIAI CONCEPES. ...ttt ettt ettt et e tb e et e nbe e 7
2.2.1. CONEEXE PATAIMETETS.ieieiieie ettt ettt et e 7
2.2.2. VRIOCILY TOIMALTING ...c.vveieteeitei ettt 8
2.2.3. TranSaCION ODJECTeiiiieiiieiee ettt ettt nnne s 9
2.2.3.1. CommON tranSaction TEATUIEScccuureiiiieeciie e 9
2.2.3.1.1. OPEratiON ALcciuviiieeiiieitie ettt 9
2.2.3.1.2. Tracing SENSILIVE TaLAc.veeiiiiiiieiiie e 9

2.2.3.2. SUBSCIIDEr ChANNElo 10
2.2.3.3. PUBLISNEr ChanNEL ... 10

2.3. SUDSCIIDEr SPECITIC CONCEPLS ...ttt 10
220 04 10 4100 o USSR 10
2.3.2. CNAINING ...ttt ettt b et e bbbt 11
2.3.3. INIEIAHZATION ...ttt 12
2.3.4. TOKEN FEPIACEIMENT ...ttt e e e e e e e st e e annee e 12
2.4. PUbBIisher SPECITIC CONCEPLSciuvieeiiiee ettt e e et e e e e e e snaeeeanneeeanes 13
0 T oo | T SRR 13
2.4. 1.1 INEFOAUCTION ..ottt ettt ettt ettt e st 13
2.4.1.2. OPEration GaALA..........eeeiieeeiieeeiiie e e s e s e et e e e nrae e e snraeesnaeeesnneeens 13
2.4.0.3. PIOCESSING .. eeeiutteeiiieeetteeesiteeasteeeatteeasteeeasseseessaeeeastaaeanseaeaataeeessaeeesnseeesneneennsenens 13
A I 11 =10 1 o SRR 14

3. SLrategieS (PIUGINS)....eeiiiee ettt e st e e e e et e e et e e et e e e nna e e e sse e e e snteeeanneeeannes 14
TR 10 oK Tod | o PSPPSR PO 14
3.1.1. Command FOrMAaLtINGccvveiiiieeiiie e 14
3.1.2. ComMMANG EXECULIONccuviiiiiieiiiiesiie ettt 14
3.1.3. RESPONSE PAISING ...vveeiuviieiiiee ittt e ettt e e st e e st e e st e e st e e st e e et e e e snb e e e snaeeesntaeeanteeeanneeeanes 15
3.1.4. ReSPONSE FOIMALLINGeeiiviieiiie ettt et e e e et e e s e e e 16
BL2. PUBIISNET ...t 16
3.2.1. REQUESE PAISINGvvieiiieeiiiee ittt e ettt e e st e e stee e s e st e e st e e et e e e stb e e e anaeeesnaeeesnbeeesnneeeanes 16
3.2.2. ReQUESE FOIMALTINGcvvveeiiiee ettt e e e e ae e e e e b e e anaee e 16
3.2.3. RESPONSE FOIMALLINGeeiiviieiiiec ettt e e e e e e s e e 16

4. ShiM CONFIQUIALION.......coiiii et e e et e e et e e e e s e e e anbeeeaneeeanes 17
U Lol o= PRSPPI 17
I T |V = U SRRSO 17
4.1.2. Command FOrmattingcccviiiiiie i 18
4.1.2.1. VelocitySubRequestFOrmMatStrategycccvvreeiiiee e 18
4.1.2.2. JsonSUDREQUESEFOIMAtSIIAtEQY .. .ccvvveeiiieeciie et 18
4.1.3. COMMANA EXECULEcuvveiiiieiiii ettt sttt e et nnee e 18
A.1.3. 0 HEEP oo e et nree s 18
O S Tox |0 SO PO ST PRPPP 21
A.1.3.3 FIIB oo et e nree s 22

© Stefaan Van Cauwenberge p- Page 2/38

Text Protocol Driver Page 3/38

4.1.4. RESPONSE PAISINGeeiutieiiieiiieeiee sttt ettt ettt ettt ettt e 22
A.14.10JSON Lottt e ettt et e e beenree s 22

A.1.4.2. IDOM ...ttt ettt abaenree s 22

4.1.4.3. W3C DOM ..ottt ettt sttt ettt et et e e nae et e e teeanaaennee s 23

BLLAA INONC ...ttt ettt e e e e et e e ettt e e e e e e r et e e e e e e e e nrrees 23

4.1.5. RESPONSE FOIMALTINGeeiuviiiiieiie et 23
4151 VRIOCITY.....eeieieee ettt 23

O V| o 1] - RSP RTR 23
L N Y - o PRSP RPURRSPRRPPR 23
4.2.2. REQUESE PAISING ...eeuvveeuteeittiesiee ettt ettt ettt ettt s bt et et et eesbb e e nbe et e e abneenbeeanne e 24
4.2.2.0. JSON ..ottt ettt e et et e e e aeenrae s 24

4.2.2.2. IDOM ...ttt aaa e 24

4.2.2.3. W3C DOM ..ottt sttt e et e e te e e nnae s 24

A N[0 41 PP P SO 24

4.2.3. SUDMIE JUAQE ...ttt ettt 25
4.2.3.0. JAVASCIIPE ..ttt ettt 25

4.2.4. REQUESE FOIMALTINGvveieeieiiii ettt 25
A.2.8.1. VRIOCITY.....ooiiiiiee ettt ettt 25

4.2.5. RESPONSE FOIMALTINGeiuviiieieiie ittt 25
4.2.5.1. VRIOCITY.....ooiiiieie ittt ettt 25

B.2.68. POIIBE ...ttt e a et e et a e e e e nnaa e e arae e 25
N R T 11 =T 3T PP SURSTRRRTR 25
O 0 R |11 ¢ IO USSP PR STOPRPPRTS 25

5. INSTAIIALION ...ttt ettt ettt 26
5.1, NON TEMOTE IOAUET ...ttt 26
5.2, REMOTE J0AUEB ...ttt ettt ettt 26

LT @0 1 [0 0T - 4T o PSSR 27
ORI (=Y (o Tod 1§V =T 1] LA o RSP RR 27
6.2, CONLEXE PATAMETEIS ...t e e e e e e s s 27

7. EXamPple CONFIQUIALIONSeiiiiieiiiee ettt e et e et e et e et eesnte e e nntaeeanneeeannes 28
7.1. SLES user provisioning (SCrPLING)coiuureiiiieiiieeeitee e siee e tee st e e sire e sivn e e snae e nee e 28
7.2. REANAL TPA (HTTP) ittt ettt ettt 28
7.3. Simple scripts for request URL and headersGoogle Apps (HTTP)....ccceevvveiiiveeviiie e, 28

8. Third party libraries and lICENSESccuiiiiiie et 29

1
2 Introduction

2.1 About this driver

This shims is a protocol level shim, focusing on text based protocols. Text base protocols are those
protocols that are mainly used as a means to transfer the (text) content. As a result, the actual
number of methods in the API's are typically limited.

Examples:

http: the content is for example the actual JSON, SOAP or XML message. Http is the means
of transporting the content, with a limited number of API calls (PUT, GET, POST,...).

© Stefaan Van Cauwenberge p- Page 3/38

Text Protocol Driver

Page 4/38

Scripting: the content is the actual on the fly generated script. The protocol is the execution

of the script.

This driver provides an extremely flexible but simple method to integrate with these text base
protocols.

Flexibility and simplicity are provided via:
a plugable architecture in every important step of the process
javascript based configuration
velocity templates for formatting both the XDS and application commands

example configuration for eg Google Apps (bidirectional) and Linux account creation.

3 Components

3.1 Architecture Overview

3.1.1 High level
The shim has the following architecture:

3.1.2 Shim Subscriber
The subscriber channel uses the following 4 components:

Text Protocol Shim

IDM

A

Shlm/Subscrlber

- —

\J

- 1
-

1. Request Formatter: this components formats the received XDS command into something the

application expects: JSON, XML, SOAP, script,...

2. Executioner: the content is “executed”. This execution can be literal (eg a script) or logical

(eg: http put).

*

© Stefaan Van Cauwenberge

Page 4/38

Text Protocol Driver Page 5/38

3. Response Parser: the response from the application is parsed into a usable java object.

4. Response Formatter: the response is formatted to something that the IDM engine can work
with (minimal requirement: XML, preferably XSD).

3.1.3 Shim Publisher
The publisher has two major options: polling or listening. Both can be used at the same time if

wanted.
3.1.3.1Poller
Text Protocol Shim
Format |-—— Parse |«——— Listener |«——
- Shim Puﬂ-iSher I
— - SO, \
. /) APP

-

Shi ubscriber
= -, -

The poller uses the subscriber channel of the shim. It is an active component that interrogates the
application. It adds one component.

1. Poller: the poller generates the queries to the application, and based on the formatted
responses, calculates a delta and generates the needed events on the publisher channel.

Page 5/38

*¢

© Stefaan Van Cauwenberge

Text Protocol Driver Page 6/38
3.1.3.2Listener

Text Protocol Shim

" Ibm | APP

{ Format |- f Parse |-

Sh igyéu bscriber
«—

= | Format = Execute

The listeners is a passive publisher channel where the connected application reaches out to the shim.
It has the following components:

1. Listener: this listens for incoming requests, and returns, after processing, the result back
2. Parser: the parser parses the incoming request into a java object for easy handling later on.

3. Request formatter: the formatter formats the parsed request into something that the IDM
engine understands (minimal requirements: XML, preferably XSD).

4. Response formatter: the response formatter formats whatever is returned by the IDM engine
to a format suitable for the connected application.

3.2 General concepts
3.2.1 Context parameters
The following context parameters are common in various places of the strategies:

where javascript is used to calculate a value.

during actual processing of the strategy.

Parameter Description Available in

transaction The current transaction. all
Object of type 1subTransaction Of TPubTransaction.

driver A wrapper of the driver configuration (connect string, all
username and password, filter), driver persistent data and
results of the last initialization cycle. Object of type

IdriverAbstraction.

*¢

© Stefaan Van Cauwenberge Page 6/38

Text Protocol Driver Page 7/38

Parameter Description Available in

trace Trace object that enables you to write data to the IDM all
trace file.
Object of type com.novell.nds.dirxml.driver.Trace

stderr Allows the code in the script engine to redirect stderr for ~ ScriptExecuteStrategy
capturing error conditions.
Object of type java.io.PrintStream

stdout Allows the code in the script engine to redirect stdout for ~ ScriptExecuteStrategy
capturing the script response.
Object of type java.io.PrintStream

3.2.2 Velocity formatting

Velocity is the template engine that is used to format request & responses on both the subscriber and
publisher. It contains some simple coding constructs (http://velocity.apache.org/engine/devel/user-
guide.html) to generate text.

The engine is preconfigured with the following tools (http://velocity.apache.org/tools/2.0/):

org.apache.velocity.tools.generic.ClassTool
org.apache.velocity.tools.generic. ComparisonDateTool
org.apache.velocity.tools.generic.ConversionTool
org.apache.velocity.tools.generic.DisplayTool
info.vancauwenberge.idm.driver.txtprotocol.velocity.EscapeTool
org.apache.velocity.tools.generic.FieldTool
org.apache.velocity.tools.generic.MathTool
org.apache.velocity.tools.generic.NumberTool
org.apache.velocity.tools.generic.ResourceTool
org.apache.velocity.tools.generic.SortTool
org.apache.velocity.tools.generic. XmlTool
info.vancauwenberge.idm.driver.txtprotocol.velocity.OauthTool
info.vancauwenberge.idm.driver.txtprotocol.velocity.DnTool
info.vancauwenberge.idm.driver.txtprotocol.velocity.StringTool
You can configure the tools by updating the file
info\vancauwenberge\idm\driver\txtprotocol\velocity\configuration.xml in the shim's jar.

The following extentions have been added to Velocity:
EscapeTool has been extended to add support for escaping Json and bash scripts.
OauthTool has been added to handle cryptographic and encoding use cases.

DnTool has been added to extract elements (values and types) from a dn. It supports ldap
and (qg)slash formats by auto-detection.

© Stefaan Van Cauwenberge) Page 7/38

http://velocity.apache.org/engine/devel/user-guide.html
http://velocity.apache.org/engine/devel/user-guide.html
http://velocity.apache.org/tools/2.0/

Text Protocol Driver Page 8/38

StringTool: a wrapper around Apache's org.apache.commons.lang.StringUtils

3.2.3 Transaction object
The transaction object is updated as it travels through the shim.

3.2.3.1Common transaction features

3.2.3.1.1 Operation data
Each transaction can store operation data. This data is kept for the duration of the transaction.

Operation data is a key-value pair where the key is a string, and the value can be any object. You
can access the operation data using the following methods on the transaction object:

method Description

setOperationData (String name, Object value) Set operations data with the given name.
This will overwrite any previously stored
operation data with this name.

getOperationData (String name) Retrieve operation data with the given
name.

containsOperationData (String name) Tests if operation data with the given name
is known.

During a polling cycle, the poller pre-sets some operation data. See chapter 2.4.1: Polling.

3.2.3.1.2 Tracing sensitive data

Depending on the trace level, the shim traces the formatted requests and responses. Since this can
contain sensitive data, the shim cannot blindly dump all data in the trace. It masks data using the
following rules:

The values of the known sensitive attributes as defined by the filter/class definition.
The values of the attributes that are marked as sensitive in the XSD command.

Data that is marked as sensitive by the shim configurator via the transactions
addSensitiveData (). This allows data that is converted or transformed in the formatting
strategy, or that is returned from the application, to be masked as well.

The value to mask will become ***' in the trace.
Query
3.2.3.2Subscriber channel

The following tables tries to give an overview of the various stages of this object on the subscriber
channel. After each stage, more information is stored in the transaction object.

Result retrievable by
Receive an XSD command getXDSCommand ()

© Stefaan Van Cauwenberge) Page 8/38

Text Protocol Driver Page 9/38

Stage Result retrievable by

Format request getFormattedRequest ()

Execute request getRawResponseString ()
getRawResponseObject ()
getRawMetaData ()
shouldInitialize ()

getExecuteException ()

Parse response getParsedResponse ()
Format response Returned as a response to the subscriber channel.
Chained transaction getChainDepth ()

getParentTransaction ()

During every step, you have access to attributes stored in the vault via the queryhandler
(getoueryHandler ()). It allows retrieving attributes of the object in the current transaction via
getAttribute () (even if the current command did not contain this attribute) or of any other object
in the identity vault (getsourceaAttribute ()).

3.2.3.3Publisher channel

Stage Result retrievable by

Receive an application request getRawStringRequest ()
getRawObjectRequest ()
getRawMetaData ()

ngetherequest getParsedRequest ()

Format the request to XSD getXSDFormattedRequest ()

Submit the XSD on the isSubmitted ()

publisher channel g e ponselile L)

Format response Returned as a response to the application.

3.3 Subscriber specific concepts
3.3.1 ICommand

The transaction contains a reference to the command received by the shim. This command allows
simplified access to the various attributes in the command.

Command attributes getOperation
add All attribute nodes from the add ADD
event.

If a password element is present, an
attribute 'password' will be added,
overruling any password attribute
that was present.

delete Empty DELETE

© Stefaan Van Cauwenberge

*¢

Page 9/38

Text Protocol Driver Page 10/38

Command attributes getOperation
modify The attribute nodes. MODIFY
modify- A 'password' attribute. MOIFYPASSWO
password RD
move The following attributes: MOVE

src-dn

qualified-src-dn
parent-src-dn
parent-qualified-src-dn
parent-dest-dn

query The matching attributes (search-attr) QUERY
query-ex The matching attributes (search- QUERY
attr), if any.
rename The following attributes: RENAME
src-dn
qualified-src-dn
new-name
init empty INIT
querypoll QUERY
3.3.2 Chaining

The shim allows chaining of commands on the subscriber channel.

This means that one XSD command can result in multiple iterations of format-execute-parse-format
cycles. This can be usefull if eg the target application does not allow to set some attributes upon an
‘add' event. One could either write policies to react on an add-association response to execute a
modify, or one could configure the shim to execute a 'modify" after the initial 'add'.

The second scenario is done by using chaining. An ecmascript expression determines whether or not
a given operation should be chained. The depth of chaining is limited by the memory:.

This can be presented as follows:

On each iteration, the previous transaction is stored as a parent transaction object in the current
transaction. The getchainbepth () method return how deep in the chain you are. All transaction in
the chain share a single XDSCommand (the initial command that was received on the subscriber).

Page 10/38

*

© Stefaan Van Cauwenberge

Text Protocol Driver Page 11/38

3.3.3 Initialization

The various execution strategies detect (lazy) if they need to initialize. This can be configured per
strategy. It is also possible to configure a initialization at start of the shim.

Initialization injects a transaction of type IInitTransaction into the subscriber channel of the
shim. This 1InitTransaction contains a pseudo init XSD command where the getOperation ()
method returns the INIT operation. The resulting response of this transaction is not returned to the
IDM engine, but stored in the transaction object itself. This can then be retrieved via the ‘driver’
context parameter using driver.getLastInitOperation () Whenever needed (eg if it contains a
token that must be used in every subsequent execution of any other transaction). The initialization
transaction can also be chained if needed (see chapter 2.3.2: Chaining).

3.3.4 Token replacement

The subscribe side supports the token {$association} inside the commands received. This token will
be replaced with the value of the last known <add-association> value returned in the current batch.
If the current batch does not contain an add that returned an <add- association>, the token will be
replaced with an empty string.

This allows one to send the following (as one batch) to the shim:

<add class-name="user" dest-dn="abn">
<add-attr attr-name="uid">
<value>testHtt</value>
</add-attr>
</add>
<modify class-name="group">
<association>ftp</association>
<modify-attr attr-name="user">
<add-value>
<value association-ref="{$association}" type="dn">abn</value>
</add-value>
</modify-attr>
</modify>

If sent in one batch, and the add operation returns an add-association element, then the
{$association} will be replaced in the modify operation, before any formatting of the modify
operation is performed, with the value of the add-association. This does not do any further
validation (eg: no validation is done to make sure that that the object class matches or that the DNs
match).

If you need this token as a literal, use {{$association}} to escape it.

3.4 Publisher specific Concepts
3.4.1 Polling
3.4.1.1Introduction

The publisher can be configured to poll the application. This is, configuration wise, the simplest
form of enabling the publisher channel, but has, resource wise, the biggest impact on the system.
Resources are CPU, memory and disk space.

Page 11/38

+*0

© Stefaan Van Cauwenberge

Text Protocol Driver Page 12/38

3.4.1.20peration data

Polling injects query events into the subscriber shim. The query will have the following operation
data set:
_previousPollTime : String, the time that the previous polling for this class started (in

milliseconds).

_previousPollEndTime : String, the time that the previous polling for this class was
completed (in milliseconds).

_thisPollTime : String, the time that this polling for this class started (in milliseconds).
On a successful poll, the next polling cycle will have this value as previousPollTime

_ispPoll :Boolean, set to true.
These can be used to eg request the changes in the connected system since the last polling cycle.

3.4.1.3Processing

Each parsed and formatted result is interpreted as follows:
instance: used to create a delta between two polling cycles. The delta is using the
association to identify objects:
> For objects not found during the last polling cycle, add events will be generated.
> For objects no longer found in this polling cycle, delete events will be generated.
> For objects that are changed, modify events will be generated.
query and query-ex: are submitted back via the subscriber channel. Any operation data from
the originating query is copied over.
others: all other elements (add, modify, delete, move,etc) are send as publisher events as is.
Note: polling does not exclude listening.

3.4.2 Listening

The publisher can be configured to listen for incoming requests. Listening uses the publisher
specific configuration for parsing and formatting.

Listening is, configuration wise, more complex (you need to configure parsers and formatters), but
has in a typical set-up, less impact on the system.

Note: listening does not exclude polling.
4 Strategies (plugins)

4.1 Subscriber
4.1.1 Command formatting

Strategy Description

Velocity Uses Velocity for reformatting the XDS command. See chapter 2.2.2 (\elocity
formatting) for more details.

‘Json A configurable JSON formatter is included. This allows for basic JSON conversion. If ‘

© Stefaan Van Cauwenberge) Page 12/38

Text Protocol Driver Page 13/38

Strategy Description

more advanced conversion is required, you should use one of the other formatters
above.

4.1.2 Command Execution

Strategy Description

HTTP

Script

File

Uses the http protocol to ‘execute’ the request.

The subscriber REST execution strategy sets the following meta data, retrieveable via
getRawMetaData () .

Description
status Integer The status code of the HTTP request.
headers Map<string, All response headers returned.
String>

Uses java's scriptengine framework to execute scripts on demand. By default, java has
the javascript scriptengine, but others should work as well.
The subscriber Script execution strategy sets the following meta data, retrieveable via

getRawMetaData () .

Description

stderr String String containing all text written to stderr during
execution.

stdout String String containing all text written to stdout during
execution.

Uses plain files to 'execute’ the plugin:
It dumps the command to a file and
reads the response from another file.

Useful for debugging or developing purposes (eg: if the SOAP or REST end-point is
not yet available when you start developing your driver).

On the file written, user defined attributes are set (if the OS & file system support this).
On the file read, user defined attributes of the file are put in the metadata map.

Note: user defined file attributes in Linux are set using

setfattr -n user.comment -v "home sweet home" /path/toFile
On windows, user defined attributes are stored as Alternate Data Streams (ADS). You

can list the ADS using powershell:

Get-ltem -Path C:\path\to\file -stream *

View the content of a specific stream (‘method' in this example):

© Stefaan Van Cauwenberge) Page 13/38

Text Protocol Driver Page 14/38

Strategy Description

Get-Content -Path C:\temp\stdOut.txt -stream method

4.1.3 Response Parsing

Strategy Description

JSON Parses the response to a JSON object.

JDOM Parses the response to a JDOM2 document. Depending on te situation, JDOM2 can be
more friendly to use than the standard W3C document.

wW3C Parses the response to a standard W3C DOM document.
DOM
None Does not parse anything. This will cause the corresponding context parameter to be

null all the time.

4.1.4 Response Formatting

Strategy Description

Velocity Uses Velocity for reformatting the XDS command. See chapter 2.2.2 (\Velocity
formatting) for more details.

4.2 Publisher

When the publisher uses the polling mechanism, the subscriber channel is used. See the subscriber
chapter above.

When the publisher is a passive listener component, the publisher channel of the shim uses it's own
strategies.

Every incoming request is processed in the following sequence:
1. Request parsing
2. Submit judge
3. (optional) Request formatting
4. (optional) Submit on the publisher channel
5. Response formatting

The optional items (3 & 4) are only executed if the submit-to-shim judge returned true.

*¢

© Stefaan Van Cauwenberge Page 14/38

http://www.json.org/javadoc/
http://www.jdom.org/docs/apidocs/
http://www.jdom.org/docs/apidocs/
http://www.jdom.org/docs/apidocs/
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html

Text Protocol Driver Page 15/38
4.2.1 Request Parsing

Strategy Description

JSON Parses the request to a JSON object.

JDOM Parses the request to a JDOM2 document. Depending on the situation, JDOM2 can be
more friendly to use than the standard W3C document.

W3C Parses the request to a standard W3C DOM document.
DOM
None Does not parse anything. This will cause the corresponding context parameter to be

null all the time.

4.2.2 Request Formatting

Strategy Description

Velocity Uses Velocity for reformatting the request to an XDS command. See chapter 2.2.2
(Velocity formatting) for more details.

4.2.3 Response Formatting

Strategy Description

Velocity Uses Velocity for reformatting the response to the application's requested format. See
chapter 2.2.2 (\elocity formatting) for more details.

5 Shim configuration

5.1 Subscriber
5.1.1 Main

Param NET Description

sub.core.chain.judge.]js Chain script Javascript that returns true or false
depending on whether the current
transaction should be executed again
(chained).

sub.core.ignoreParserkxce |gnore response parser Should exceptions thrown by the

ption exceptions response parser be ignored (and the shim
moves on to the next step: response
formatting), or should this generate an
error. When ignored, the transaction's
getParsedResponse () Will return null
when an exception happened.

sub.core.initOnboot Initialize on boot This will not postpone the initialization
until it is required (lazy initialization),

*¢

© Stefaan Van Cauwenberge Page 15/38

http://www.json.org/javadoc/
http://www.jdom.org/docs/apidocs/
http://www.jdom.org/docs/apidocs/
http://www.jdom.org/docs/apidocs/
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html
http://docs.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html

Text Protocol Driver

Page 16/38

Param
sub.core.prettyprintResul
=
sub.core.querybackModifyC
ommand
sub.core.queryexSupported
sub.command.strategy.exec
ute
sub.response.strategy.for
mat
sub.command.strategy.form
at
sub.response.strategy.par
ser

Name

Pretty print response

Query back for
missing attributes

Is query-ex (paged
search) supported

Command execution

Response Formatter

Subscriber request
formatting

Response Parser

5.1.2 Command formatting

Description

but will force an initialization upon
starting of the driver. This does not
exclude lazy initialization later on.

Should the shim pretty print the
responses. This helps (readability) while
developing a driver, but in rare occasions,
it might impact your results as well (eg:
an attribute value consisting only of
white-space data).

Should the shim perform a query back for
missing attributes on a modify command

Is query-ex (paged search) supported by
the target application and the
implemented formatting logic.

How will the command be executed.

How will the response be formatted. This
formatter must format the response to
one or more XDS command element(eg:
add, add-association, status,...).

How will the requests be formatted to the
application’s expected format.

Optional parsing of the response. The
parsed response can be used in the

response formatter later on.

5.1.2.1VelocitySubRequestFormatStrategy

sub.outputformat.velocity \elocity Template
.template

Description

Contains the reference to the main
velocity template.

5.1.2.2JsonSubRequestFormatStrategy

Param

sub.
aysForClass.script.js

sub.
aysForAttributes.script.j

outputformat.json.arr

outputformat.json.arr

Name

Description

Classes that must be a By default, the root node in the generated

JSON array

JSon is not an array but an object. The
classes in the returned array (javascript)
will be formatted as an array.

Example value:

dummy=["user", "group"]

Map of class-attribute By default, single attribute values in the

list that must be a

© Stefaan Van Cauwenberge

*
*

Page 16/38

Text Protocol Driver

Page 17/38

Param

S

Name
JSON array

Description

generated JSon is not of type array but
object. The map (class:attribute list)
return by this ecmascript expression list
the attributes for a given class that must
be formatted as array values.

Example value:

dummy=={"user": ["phone", "address"], "group
"=["member"]};

5.1.3 Command Execute

5.1.3.1Http

Param Name Description

sub.execute.rest.reinit.s
tatusregexp

sub.execute.rest.reinit.r
awresponseregexp

(Re)initilization status Regexp that, when matched on the

regexp

(Re)initilization raw
response regexp

returned http status code, will trigger a
(re)-initialization command. Initialization
(authentication) is done lazy. Whenever
the status code of the current operation
matches the regexp given, an init
command will be executed, followed
with a re-execution of the original
command.

Example value:

4031401

Regexp that, when matched on the raw
response, will trigger a (re)-initialization
command. Initialization (authentication)
is done lazy. Whenever the status code of
the current operation matches the regexp
given, an init command will be executed,
followed with a re-execution of the
original command.

Example value:

.*Access denied.*

© Stefaan Van Cauwenberge

*¢

Page 17/38

Text Protocol Driver

Page 18/38

Param Name

sub.execute.rest.exceptio FHU)excepﬁon

n.handle Strategy

sub.execute.rest.keystore Keygnref"e

.file

sub.execute.rest.header.s CusU3n1headersscht

cript.js

Description

What to do when the http operation itself
returns an exception.
- JSONRPC20: create a Json error

response as raw response string
SOAP11: create a SOAP1.1 fault
response as raw response string
SOAP12: create a SOAP1.2 fault
response as raw response string
THROW: throw the exception.
NDSSTATUS: generate a XDS
error status element
Throwing the exception causes the
transaction to stop. All others will
continue the transaction (parse &
format), allowing you to handle in the
shim what should happen.

Optional keystore file. If using SSL, you
can specify an optional driver specific
keystore file. If not specified, the java
default keystore will be used.

Map (associative array) containing
custom headers that must be added to the
http request (eg: SOAPAction for SOAP
calls or some authentication token).
Example scripts:

*

a={"SOAPAction":driver.getConnectString ()
+H/H}
*

function getHeaders (command) {
var a = {};
var xdsOperation =
command.getOperation () .toString () ;
if (xdsOperation=="modify") {
a["SOAPAction"] =
"updateAction"+command .getOperationClass
()7
telse(
a["SOAPAction"] =
command.getOperationClass () ;
}
return a;
}
getHeaders (operation.getXDSCommand ()) ;

© Stefaan Van Cauwenberge

*¢

Page 18/38

Text Protocol Driver

Page 19/38

Param

sub.execute.rest.method.s
cript.Jjs

Name
HTTP Method script

Description

HTTP Method script returning GET,PUT,
POST or GET for the current command.
Note: SOAP uses POST for all operation.
Example scripts:

" rosT”
*

function getMethod (command) {
var xdsOperation =
command.getOperation() .toString () ;
if (xdsOperation=="query") {
return "GET";
telse(
return "POST";
}

}
getMethod (operation.getXDSCommand ()) ;

© Stefaan Van Cauwenberge

*¢

Page 19/38

Text Protocol Driver

Page 20/38

Param

sub.execute.rest.url.scri
pt.Jjs

Name

URL calculation script

Description

Script to calculated the URL.
Example scripts:
*ldriver.getConnectString()

* function getConnectString (connectString,
command) {
var className =
command.getOperationClass () ;
var operation =
command.getOperation () .toString () ;
var association =
command.getAssociation () ;
//Query without association value
//=> The query needs to translate to
URL parameters
if (operation=="query"
&& l!association) {
var result =
connectString+"/"+className+"?";
var attributeMap =
command.getAttributes () ;
var keys = attributeMap.keySet () ;

//No matching attributes: read
without any filter
if (keys.size ()==0) {
return connectString+"/"+className;

}

for (var iterator = keys.iterator();
iterator.hasNext ();) {
var aKey = iterator.next();
result =

result+aKey+"="+attributeMap.get (aKey)+"&
".

}

return result;

}

//Query without association value
//=>Direct read of an instance based on
association
if (operation=="query") {
return
connectString+"/"+className+"/"+associati
on;

}

//Default: the url contains the
className from the command. We can do
POST, DELETE and GET operations

return connectString+"/"+className;

}

getConnectString (driver.getConnectString (
) ,operation.getXDSCommand ()) ;

5.1.3.2Script

Param

sub.execute.scriptengine.
stderr.regexp.error

sub.execute.scriptengine.
stderr.regexp.reinit

Name

Error regexp for stderr

Re-initialize regexp

for stderr

Description

Regexp that, when matched on stderr, will
throw an exception during execution.

Regexp that, when matched on stderr,
will trigger a (re)-initialization command.
Initialization (authentication) is done
lazy. Whenever stderr of the current

© Stefaan Van Cauwenberge

*¢

Page 20/38

Text Protocol Driver

Page 21/38

Param

sub.execute.scriptengine.
stdout.regexp.error

sub.execute.scriptengine.
stdout.regexp.reinit

sub.execute.scriptengine.
shortname

5.1.3.3File

Name

Error regexp for
stdout

Re-initialize regexp
for stdout

Engine name

Description

execution matches the regexp given, an
init command will be executed, followed
with a re-execution of the original
command.

Regexp that, when matched on stdout,
will throw an exception during execution.

Regexp that, when matched on stdout,
will trigger a (re)-initialization command.
Initialization (authentication) is done
lazy. Whenever stdout of the current
execution matches the regexp given, an
init command will be executed, followed
with a re-execution of the original
command.

The name of the engine to use. By
default, java includes 'js' (ecmascript)
script engine. See
http://en.wikipedia.org/wiki/List_of JV
M _ languages for more java script
engines and their respective

documentation on how to install them.

TODO

5.1.4 Response Parsing
5.1.4.1JSON

No configuration parameters for JSON parsing.

5.1.4.2JDOM

Param

sub.parse.jdom.ignore bou
ndery whitespace

sub.parse.jdom.validating

sub.parse.jdom.ignore ele
ment content whitespace

Name

Ignore boundery
whitespace

Validating parser

Ignore element
content whitespace

Description

Description

Should the DOM parser ignore boundery
whitespace or not.

Should the parser be a validating DOM
parser or not.

Should the DOM parser ignore element
content whitespace or not.

© Stefaan Van Cauwenberge

*¢

Page 21/38

Text Protocol Driver

Page 22/38

5.1.4.3W3C DOM

sub.parsing.dom.validatin Validating parser

g

sub.

parsing.dom.ns aware

Namespace-aware
parser

Description

Should the DOM parser be a validating
DOM parser or not.

Should the DOM parser be namespace
aware or not.

5.1.4.4None

No configuration parameters when no parsing is done.

5.1.5 Response Formatting
5.1.5.1Velocity

sub.format.response.veloc Temp|ate reference
ity.template

Description

Velocity template.

5.2 Publisher

5.2.1 Main

Param NET Description

pub.heartbeat.interval Heartbeat interval in Specify the heartbeat interval in minutes.

minutes Set this value to O to turn off the

heartbeat.

pub.listening.class Publisher Listener Listening class for receiving publisher
events. This allows an external partner to
trigger the publisher channel. Listening
can be combined with polling if needed.

pub.request.parser.class Pyblisher request Parser class used to parse what is

parser received on the publisher channel.

pub.polling.class Publisher Polling Polling class for generating publisher
events using the subscriber channel of the
shim. This allows active polling of the
connected system. Polling can be
combined with listening if needed.

pub.request.formatter.cla Pyblisher Request Formatter for transforming the publisher

- formatter request to XSD command documents.

pub.response.formatter.cl Ppyplisher Response Formatter for transforming the result of

— formatter the request from XSD to the application
expected format.

pub.submitjudge.class Submit Judge Judge that determines if a given publisher

request should be submitted to the engine

© Stefaan Van Cauwenberge

*¢

Page 22/38

Text Protocol Driver Page 23/38

Param Name Description

or not. When submitting is not needed,
the shim skips the request formatting
step, does not submit anything on the
publisher thread to the engine, and
executes the response formatting step to
return the result.

5.2.2 Request parsing

5.2.2.1JSON

No configuration parameters for JSON parsing.

5.2.2.2JDOM

Param Name Description

pub.parse.jdom.ignore bou |gnore boundery Should the DOM parser ignore boundery

ndery whitespace whitespace whitespace or not.

pub.parse.jdom.validating \jalidating parser Should the parser be a validating DOM
parser or not.

pub.parse.jdom.ignore_ele |gnore element Should the DOM parser ignore element

ment_content whitespace content whitespace content whitespace or not.

5.2.2.3W3C DOM

Description
pub.parsing.dom.validatin \jalidating parser Should the DOM parser be a validating
g DOM parser or not.

sub.parsing.dom.ns_aware Namespace-aware Should the DOM parser be namespace
parser aware or not.

5.2.2.4None

No configuration parameters when no parsing is done.

5.2.3 Submit Judge
5.2.3.1Javascript

Description
pub.submitjudge.Js.submit Submit script Javascript, returning ‘true’ when the
Judge.Js current transaction should be submitted

to the engine, or 'false' when no.

*¢

© Stefaan Van Cauwenberge Page 23/38

Text Protocol Driver Page 24/38

5.2.4 Request Formatting
5.2.4.1Velocity

Description
pub.format.request.veloci \glocity Template Contains the reference to the main
ty.template velocity template.

5.2.5 Response Formatting
5.2.5.1Velocity

Description

pub.format.response.veloc \elocity Template Contains the reference to the main
ity.template velocity template.

5.2.6 Poller

Param Name Description

pub.polling.custom.classl Polling classes and Polling classes and attributes in the

st attributes applications namespace. Each line can
contain a class or a class and attributes in
the format
<class>[:attributel,attribute2,attribute3].
Example:

user:firstName,lastName
pub.polling.interval Polling interval Polling interval (in seconds).
pub.polling.prittyprint Pritty print

pub.polling.type Polling classes What classes should be polled. User
defined allows entry of a list of classes
and it's attributes, "filter" uses the driver
filter and attributes.

5.2.7 Listener

5.2.7.1Http
Param NET Description
pub.listener.http.auth Publisher Authentication to use on the publisher.
authentication Values:

None

Basic

OSP OAuth2
pub.listener.http.basicau Password For Baisc authentication, password of
o passmord authorized user.
pub.listener.http.basicau sername For Baisc authentication, username of
ERREEEE authorized user.

*¢

© Stefaan Van Cauwenberge Page 24/38

Text Protocol Driver

Page 25/38

Param

pub.listener.http.bearera
uth.issuer

pub.listener.http.bearera
uth.subjects

pub.listener.http.bearera
uth.keystore

pub.listener.http.script.
contenttype.js

pub.listener.http.host

pub.listener.http.support
ed.methods

pub.listener.http.keystor
e.password

pub.listener.http.keystor
e.path

pub.listener.http.port

pub.listener.http.serverk
ey.alias

pub.listener.http.serverk
ey.password

pub.listener.http.mutual

pub.listener.http.ssl

6 Installation

6.1 Remote loader vs non-remote loader

6.1.1 Non remote loader

Name
Bearer issuer

Bearer subject to grant

access

OAuthl keystore file

Result content type

Listening host Host to
listen on.

Supported HTTP
methods

Keystore password
Keystore path

Listening port
Key Alias

Key Password

Mutual SSL
certificates

Use SSL

Description

For OSP OAuth2: the osp oauth URL
(the issuer to trust and consult). Eg:
https://osp.mycompany.com:8543/osp/a/i
dm/auth/oauth2

The bearer subject that will be granted
access. This has the format of “oauth2-
<clientID>". Example: “oauth2-
System1”

Keystore file where OSP’s public key is
stored. Leave empty to use te JVM’s
default keystore.

Note: the shim contains a Keytool helper.

Content type script. The result will be
used to set the content type

Use 127.0.0.1 to listen to all IP addresses

Comma seperated list of supported HTTP
methods. 405 will be returned immediate
on non supported methods without
parsing, formatting etc.

Blank means that all methods are
supported.

Password of the keystore.
Path to the keystore file.

Listening port.

Alias in the keystore of the server key to
use.

Password of the above key.

Is client authentication required

Use SSL protocol.

This driver is, due to version conflicts in various jar's, only supported in a remote loader

configuration.

© Stefaan Van Cauwenberge

*¢

Page 25/38

Text Protocol Driver Page 26/38

6.1.2 Remote loader

The shim has been tested in the java (dirxml_jremote on Linux), Linux native (rdxml) and Windows
remote loaders. In order to be able to use more recent version of various open source jars, and in
order to be independent of remote loader upgrades or version, this shim includes it's dedicated jars
in a separate lib folder. The configuration for this is straight forward:

1. Install the remote loader per documentation. Setting the remote loader password and driver
password as required

2. Configure a remote loader instance, using the following class:
info.vancauwenberge.idm.driver.txtprotocol.shim.driver.TxtProtocolshim

3. Copy the Text Protocol shim jar (Httpdbriver_<version>.jar) to the remote loaders classpath
on the servers.
Eg: /opt/novell/eDirectory/lib/dirxml/classes/

4. Copy the jar dependencies from the lib folder to a dedicated path on the servers.
Eg: /opt/txtp/lib

5. In the shim configuration, set the lib path (Driver Configuration — Driver Parameters —
Driver Options) the the path where you copied the jar dependencies.
Eg: /opt/txtp/lib

6. Configure and start the driver and remote loader as normal

6.2 Designer

In designer, import the Text Protocol IDM packages, and drag-and-drop the required icon (REST,
SOAP, Scripting, ...). Select the Text Protocol Base package and the desired options.

Axample for Google apps:

1.
2.

Drag and drop the Google Apps from the palette onto your workspace.

Select “Text protocol Google Apps base” and click “Next”

© Stefaan Van Cauwenberge

Page 26/38

+*0

Text Protocol Driver

Page 27/38

QH Driver Configuration Wizard

~ Feature Selection
» Select Driver Base Configuratic
Select Mandatory Features
Select Optional Features
v Installation Tasks
Determining Installation Tasks,
v Installation Summary

Select Driver Base Configuration

() Only one base package can be selected.

Available Packages

O x

/|
€t

v Feature Selection
@ Select Driver Base Configuratic
Select Mandatory Features
©» Select Optional Features
- Installation Tasks
Determining Installation Tasks,
~ Installation Summary
Confirm Installation Tasks

Select Optional Features

Mame

[7] & Text Protocol Google Apps REST Sample Configuration
@ Text Protocol Entitlements Google Apps Cenfiguration
[/ Text Protocoel Account Tracking Google Apps Configuration
14 Text Protocal Managed System Information

[/14€E Text Protocel Passward Synchronization

Show only applicable package versions

Version

0.0.1.20181208134714
0.0.1.20181208134451
0.0.1.201812028134424
0.0.1.20181208134308
0.0.1.20181208134347

< Back Mext > Einish

Mame Version
Confirm Installation Tasks (A Ted Protocol Google Apps base 0.0.1.30181210134608
[] Google Apps Base 2.3.0.20160809163119
[] Show only applicable package versions
@' Import Driver Configuration < Back Mext > Einish Cancel
< >
H H b b 3 29
3. Select all options required (by default, all options are selected) and click “Next”.
& Driver Configuration Wizard O X

Cancel

4. Provide the required information to connect to Google Apps. See chapter 7.3: Google Apps

(HTTP)

7 Configuration

7.1 Velocity Templating

See the Velocity user guide for what Velocity is and how to use it. Velocity tools is configured by

© Stefaan Van Cauwenberge

) Page 27/38

http://velocity.apache.org/engine/devel/user-guide.html

Text Protocol Driver Page 28/38

default. The configuration can be changed by modifying the configuration.xml file located in the
shim jar (info/vancauwenberge/idm/httpdriver/velocity/configuration.xml).

7.2 Context Parameters

Each javascript driver configuration parameter or velocity template has the following context
variables/parameters:

Parame Description Example

ter

driver Enables access to driver settings: IDriverAbstracti driver.getConnectStr
- the driver's connection configuration on ing()

(connectstring, username and password)
allows storage and retrieval of state data
the driver's configuration parameters
the last know 'init' operation

trace Contains a trace object for debugging purposes com.novell.nds.d trace.trace(“message
irxml.driver. Trac ”,0)
e

transacti The current transaction. This can either be an ISubTransaction transaction.getXDS
on ISubTransaction or an IPubTransaction. IPubTransaction Command().getAttri
bute(“CN”)

7.2.1 OSP OAuth

When you want the publisher channel to be protected by OSP’s OAuth, you need to configure OSP
to allow additional clients. For this, edit the file ism-configuration.properties on your OSP server,
adding, for each client, the following lines, where clientID is the ‘username’:

com.netig.<clientID>.clientID = <clientID>
com.netig.<clientID>.clientPass = <client password/secret>

com.netig.<clientID>.response-types = client credentials

8 Example Configurations

8.1 SLES user provisioning (scripting)

The SLES user provisioning configuration provisions users and groupmemberships to a SLES
server (subscriber only). It uses the Script execution strategy to execute the needed Linux
commands on the Linux server.

The script execution strategy uses whatever was generated by the template engine, as a script. In
this example: a javascript. Due to this, you do not have to fear that upgrades will alter your server
side scripts.

This javascript executes the following Linux commands:
useradd

userdel

*¢

© Stefaan Van Cauwenberge Page 28/38

javadoc/info/vancauwenberge/idm/driver/txtprotocol/api/IDriverAbstraction.html
javadoc/info/vancauwenberge/idm/driver/txtprotocol/api/IDriverAbstraction.html
https://www.novell.com/documentation/developer/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/Trace.html
https://www.novell.com/documentation/developer/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/Trace.html
https://www.novell.com/documentation/developer/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/Trace.html
javadoc/info/vancauwenberge/idm/driver/txtprotocol/api/transaction/ISubTransaction.html
javadoc/info/vancauwenberge/idm/driver/txtprotocol/api/transaction/IPubTransaction.html

Text Protocol Driver Page 29/38

usermod
id
getent

8.2 Redhat IPA (HTTP)

8.2.1 Introduction

IPA has an online demo site (https://www.freeipa.org/page/Demo). This example configuration is
configured to provision that site. It is a simple example that can be used for basic understanding of
the shim's possibilities.

You can browse the IPA API at https://ipa.demol.freeipa.org/ipa/ui/#/p/apibrowser/type=command
This configuration uses the following features:
Authentication is form based (HTTP Post).

Simple scripts for request URL and headers

8.2.2 Driver Configuration
To install the demo driver against the IPA demo site, do the following steps.

1. Download the SSL certificate from TODO and put it in a keystore on the remote loader
server (eg /root/IPA.keystore)

2. Follow the steps in chapter 5.1.2 (Remote loader) to install/configure the remote loader.
3. In Designer, drag and drop the REST Server (Tool category) icon on the workspace.
4. Select the package “Text Protocol IPA base”
5. Select the optional features (all by default)
6. Confirm installation of the package dependencies.
7. Give the driver a name (default: HTTP IPA Rest Driver)
8. Configure the shim:
Shim parameter Value (Example) Description
Authentication ID admin An account with enough rights in the IPA system
Connection https://ipa.demol.freeip The URL of the demo application. Leave default.
information a.org/ipa/session/
Password Secret123 The password of the above account. The demo
system uses 'Secret123'

Page 29/38

*¢

© Stefaan Van Cauwenberge

Text Protocol Driver Page 30/38

Shim parameter Value (Example) Description

Server lib path lopt/txtp/lib/ Path where you copied the java jar dependencies
(step 2 above).

Keystore file /root/IPA.keystore Path to the keystore file created in step 1 above.

9. Specify the remote loader details
10. (Optional) Specify Managed System details
11. Click Finish and deploy the driver.

8.2.3 Driver Functions

This example IPA configuration synchronizes users and groupmemberships between IPA and the
IDVault based on entitlements. Users are synchronized unidirectional (from the IDVault to IPA).

It synchronizes the following attributes:

IDVault IPA Matching Comment

CN uid primary

Full Name displayname

Internet EMail Address mail

Given Name givenname

Login Disabled N/A Used to disable/enable
the account.

Surname sh

Telephone Number telephonenumber

nspmDistributionPassw password
ord

8.3 Google Apps (HTTP)

8.3.1 Introduction

The Google Apps configuration implements a bidirectional sync between Google Apps and the
IDVault.

The Google Apps configuration demonstrates the following features:
HTTP execution strategy

QueryHandler: Google apps supports delta updates (PATCH), but some attributes are objects
or arrays of objects. These must always be submitted as a whole. Examples are the name

© Stefaan Van Cauwenberge) Page 30/38

Text Protocol Driver Page 31/38

object (consisting of givenName and familyName) and phones array of objects (where each
object has a type and a value). This is handled by the naming convention (either <attribute>
or <object>.<attribute> or <array>.<type>.<attribute>).

In order to get the missing attributes (eg the surname when the modify event only contains
the given name) from an object or an array of object, the template uses
transaction.getQueryHandler () .getAttribute (String name). This either returns the
attribute present in the current command, or queries back to the IDV to get the attribute.

Google Apps also demonstrates the use of OAuth to authenticate.
Shim GCV's are used for the additional OAuth parameters needed:
> oauthlmpersonateUserld: userid for the OAuth claim.

> oauthScopes: space seperated list of scopes of the OAuth claim.
https://www.googleapis.com/auth/admin.directory.group
https://www.googleapis.com/auth/admin.directory.user

> oauthPrivateKeyld: private key as generated on the account. This value is used to
populate the 'kid" value in the JWT.

> oauthURL.: https://accounts.google.com/o/oauth2/token

> domain: the domain to search in. Typically “mycompany.com”
OAuth Velocity tool for base64 encoding and signing.

Complex URL and header scripting

Support for paged search. Google Apps requires that every request for a new page contains
all query parameters. Since the IDM engine only provides these argument in the initial
search, this configuration encodes these arguments and the Google Apps search token into a
new search token. This is then, for all subsequent pages, used to pass on the needed info to
Google Apps.

8.3.2 Driver configuration
8.3.2.1Google Apps configuration

8.3.2.1.1 Enable API access
1. Open your browser to: https://admin.google.com/<yourdomain>/AdminHome

where <yourdomain> is your domain name (eg “yourdomain.com”)

3. Select “API reference”

4. Enable “API Access”

Page 31/38

+¢

© Stefaan Van Cauwenberge

Text Protocol Driver Page 32/38

~ API reference

APl access AP| access
Allows access to various Google Apps Administrative APIs.

Enable API access

5.

8.3.2.1.2 Create a Google user account
This user account will be used by the driver as the user to impersonate as. The service account later
on, will impersonate this user when doing actions in Google Apps.

1. Open your browser to: https://admin.google.com/<yourdomain>/AdminHome
where <yourdomain> is your domain name (eg “yourdomain.com”)

2. Goto Users to create a new user. Enter the name, email and password.

Create a new user *
idm driver

idmdriver @ <yourcompany>

sssssnsene sssssssese

Password strength: Strong

Auto-generate password

ADDITIONAL INFO CANCEL CREATE

3.

4. Edit this user, and add the roles “Services Admin” and “User Management Admin”.

5. Log out and log in with the above account to accept the Google term of service.

8.3.2.1.3 Generate a service account key
1. Open the Google Developper console at:
https://console.developers.google.com/apis/credentials, creating a new project if non was
created before.

2. Create a new service account key.

Page 32/38

+*0

© Stefaan Van Cauwenberge

https://console.developers.google.com/apis/credentials

Text Protocol Driver Page 33/38

= Google Developers Console Q

API API Manager Credentials

o verview - A
A Overview Credentials OAuth consent screen Dormain verification

O Credentials

APIs
Credentials

You need credentials to access APls. Enable the APls you plan to
use and then create the credentials they require. Depending on the
APl, you need an APl key, a service account, or an OAuth 2.0 client
ID. Refer to the API documentation for details.

Create credentials ~

APl key
Identifies your project using a simple APl key to check queta and access.
For APls like Google Translate

OAuth client ID
Requests user consent so your app can access the user's data.
For APls like Google Calendar.

Service account key
Enables server-to-server, app-level authentication using robot accounts.
For use with Google Cloud APls

Help me choose

4. Enter a name, and specify the format “JSON”.

6. Save the Json file in safe location for later use. Whenever you need to (re)configure the
shim, you need the data in this file.

8.3.2.2Shim Installation
Follow the steps in chapter 5.1.2 (Remote loader) to install/configure the remote loader.

In Designer, drag and drop the Google Apps (Enterprise category) icon on the workspace.

Select the package “Text Protocol Google Apps base”

Confirm installation of the package dependencies.

1

2

3

4. Select the optional features (all by default)

5

6. Give the driver a name (default: Google Apps)
5

Configure the shim as follows, using the data from the Json file generated above:

Shim parameter Json value Description

Authentication ID Field “client_email” service account id. Eg: idmdriver@compose-agu-
111.iam.gserviceaccount.com.

*¢

© Stefaan Van Cauwenberge Page 33/38

mailto:idmdriver@compose-agu-111.iam.gserviceaccount.com
mailto:idmdriver@compose-agu-111.iam.gserviceaccount.com

Text Protocol Driver

Page 34/38

Json value

Shim parameter

Description

Password Field “private key”

Server lib path N/A

oauthlmpersonateU N/A
serld

oauthScopes N/A

oauthPrivateKeyld Field “private key id”

domain N/A

oauthURL Field “token_uri”

8. Specify the remote loader details

Copy paste the private key. This is everything
between “----- BEGIN PRIVATE KEY-----\n"” and
“An-----END PRIVATE KEY-----\n”, and removing
all \n' character sequences. This is a long string of
more than 1000 characters long!

Eg: assuming the value is “-----BEGIN PRIVATE

KEY-----\nThis\nIs\nThe\nValue\n----- END
PRIVATE KEY-----\n ", then the password is:
“ThislsTheValue” (without the quotes).

Path where you copied the java jar dependencies
(step 1 above).

The user account created above.

Eg: admin@yourdomain.com

This declares the rights that will be asked
authorization for by the shim.

Leave the default.

Private key. A hex looking string of about 40
characters.

Your Google Apps domain

OAuth endpoint of Google Apps.

Should be
https://accounts.google.com/o/oauth2/token

9. (Optional) Specify Managed System details

10. Click Finish and deploy the driver.

8.3.3 Driver Functions

This example Google Apps configuration synchronizes users and groupmemberships between
Google Apps and the IDVault based on entitlements. Users are synchronized bidirectional (except

for the password).

It synchronizes the following attributes:

© Stefaan Van Cauwenberge

*¢

Page 34/38

mailto:admin@yourdomain.com

Text Protocol Driver

Page 35/38

IDVault Google Apps

assistantPhone phones.assistant.value

CN externallds[] of type login_id

co addresses[].country of type
work

company organizations[].name of type
work

costCenter organizations[].costcenter of
type work

Facsimile Telephone phones|[] of type work_fax

Number

Full Name name.fullName

Given Name name.givenName

homeCity addresses[].locality of type
home

homeFax phones[] of type home_fax

homePhone phones[] of type home

homePostalAddress addresses[].streetAddress of
type home

homeState addresses[].region of type
home

homeZipCode addresses[].poBox of type

home
Internet EMail Address primaryEmail

L organizations[].location of
type work
Language languages

Login Disabled suspended

Matching Comment

primary

Generated By Google apps.
Only on publisher channel

secondary

The language should be one
in the list at
https://developers.google.co
m/admin-
sdk/directory/v1l/languages

Only sync from IDVault to
Google Apps.

mobile phones[] of type mobile

nspmDistributionPassw password

ord

otherPhoneNumber phones[] of type other

ou organizations[].department of
type work

pager phones[] of type pager

Physical Delivery addresses[].locality of type

© Stefaan Van Cauwenberge)

Page 35/38

https://developers.google.com/admin-sdk/directory/v1/languages
https://developers.google.com/admin-sdk/directory/v1/languages
https://developers.google.com/admin-sdk/directory/v1/languages

Text Protocol Driver

Page 36/38

IDVault Google Apps

Office Name work

Postal Code addresses[].postalCode of
type work

Postal Office Box addresses[].poBox of type
work

S addresses[].region of type
work

SA addresses[].streetAddress of
type work

Surname name.familyName

Telephone Number phones[] of type work
telexNumber

Title

phones[] of type telex

organizations[].title of type
work

9 Keytool helper

Matching Comment

In order to simply create or extend any keystore with trusted certificates, the shim provides a
keytool helper. This keytool helper can validate a keystore against a host, or can import certificates
into a keystore from a host when needed (host not yet trusted by the keystore).

java -cp <path to shim> info.vancauwenberge.idm.driver.txtprotocol.util.KeyTool

<command> <-options>

Where command and options are:

Command Description

certificates from the given host/port

TestKeystore
the given host/port

UpdateKeystore Update or create a keystore with one or more

Test the certificates in a given keystore against

Options

Required:
-host: the host
-keystore: path to the
keystore file

Optional:
-passphrase. Defaults to
‘changeit’
-port. Defaults to ‘443’

Required:
-host: the host
-keystore: path to the
keystore file

Optional:
-passphrase. Defaults to
‘changeit’
-port. Defaults to ‘443’

*¢

© Stefaan Van Cauwenberge

Page 36/38

Text Protocol Driver

Page 37/38

Command Description

Options

AutoConfigure Import the SSL chain of the given host/port if ~ Required:
not yet present in the given keystore.

-host: the host
-keystore: path to the
keystore file

Optional:
-passphrase. Defaults to
‘changeit’
-port. Defaults to ‘443’

Example usage:

java -cp <path to shim> info.vancauwenberge.idm.

driver.txtprotocol.util.KeyTool

updatekeystore -host 172.217.19.206 -keystore c:\Temp\testKeysoter.jks -port 443

-passphrase test

10 Third party libraries and licenses

Except the obvious dependency on the IDM framework, the Text Protocol Driver depends on the

following third party libraries:

Package
anakia-1.0.jar

antlr-2.7.7.jar
commons-beanutils-1.7.0.jar

commons-codec-1.9.jar
commons-collections-3.2.1.jar
commons-digester-1.8.jar
commons-lang-2.6.jar
commons-logging-1.1.3.jar

dom4j-1.6.1.jar
eclipse-collections-7.1.0.jar

eclipse-collections-api-7.1.0.jar Eclipse Public License - v

eclipse-collections-forkjoin-
7.1.0.jar

License

Apache Software License,

\ersion 2.0
public domain

Apache Software License,

Version 2.0

URL

https://velocity.apache.org/anakia/1.0
/

http://www.antlr.org/

https://commons.apache.org/proper/c
ommons-beanutils/

Apache Software License, https://commons.apache.org/proper/c

\ersion 2.0

Apache Software License,

Version 2.0

ommons-codec/

https://commons.apache.org/proper/c
ommons-collections/

Apache Software License, https://commons.apache.org/proper/c

\ersion 2.0

Apache Software License,

Version 2.0

Apache Software License,

\ersion 2.0

BSD style license
Eclipse Public License - v

1.0

1.0

Eclipse Public License - v

1.0

ommons-digester/

https://commons.apache.org/proper/c
ommons-lang/

https://commons.apache.org/proper/c
ommons-logging/

http://dom4j.sourceforge.net

https://projects.eclipse.org/projects/te
chnology.collections

https://projects.eclipse.org/projects/te
chnology.collections

https://projects.eclipse.org/projects/te
chnology.collections

© Stefaan Van Cauwenberge

*
*

Page 37/38

https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-logging/
http://dom4j.sourceforge.net/
https://projects.eclipse.org/projects/technology.collections
https://projects.eclipse.org/projects/technology.collections
https://projects.eclipse.org/projects/technology.collections
https://projects.eclipse.org/projects/technology.collections
https://projects.eclipse.org/projects/technology.collections
https://projects.eclipse.org/projects/technology.collections

Text Protocol Driver

Page 38/38

Package
elsa-3.0.0-M5.jar

guava-19.0.jar
httpclient-4.3.3.jar
httpcore-4.3.2.jar

jaxen-1.1.6.jar
jdom-1.1.3.jar
jdom2-2.0.5.jar
jetty-all-9.3.7.RC1-uber.jar

jiwt 0.9.0
kotlin-runtime-1.0.2.jar
kotlin-stdlib-1.0.2.jar
1z4-1.3.0.jar
mapdb-3.0.1.jar

sif4j-api-1.7.5.jar
velocity-1.7.jar

velocity-tools-2.0.jar

License

Apache Software License,
\fersion 2.0

Apache Software License,
\fersion 2.0

Apache Software License,
\fersion 2.0

Apache Software License,
\fersion 2.0

BSD style license
Apache-style
Apache-style

Apache Software License,
\ersion 2.0
Eclipse Public License 1.0

Apache Software License,
\fersion 2.0

Apache Software License,
\ersion 2.0

Apache Software License,
\fersion 2.0

Apache Software License,
\ersion 2.0

Apache Software License,
\fersion 2.0

MIT license.

Apache Software License,
\fersion 2.0

Apache Software License,
\ersion 2.0

URL

https://github.com/jankotek/elsa/blob
/master/LICENSE.txt

https://github.com/google/guava

https://hc.apache.org/httpcomponents
-client-ga/

https://hc.apache.org/httpcomponents
-core-ga/

http://jaxen.org/
http://jdom.org/docs/faq.html#a0030
http://jdom.org/docs/faq.html#a0030

https://hc.apache.org/httpcomponents
-client-ga/
https://projects.eclipse.org/projects/te
chnology.collections

https://github.com/jwtk/jjwt

https://hc.apache.org/httpcomponents
-client-ga/

https://hc.apache.org/httpcomponents
-client-ga/

https://hc.apache.org/httpcomponents
-client-ga/

https://hc.apache.org/httpcomponents
-client-ga/

https://www.slf4j.org/license.html

https://hc.apache.org/httpcomponents
-client-ga/

https://hc.apache.org/httpcomponents

-client-ga/

© Stefaan Van Cauwenberge

*

Page 38/38

https://github.com/jankotek/elsa/blob/master/LICENSE.txt
https://github.com/jankotek/elsa/blob/master/LICENSE.txt
https://github.com/google/guava
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-core-ga/
https://hc.apache.org/httpcomponents-core-ga/
http://jaxen.org/
http://jdom.org/docs/faq.html#a0030
http://jdom.org/docs/faq.html#a0030
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://projects.eclipse.org/projects/technology.collections
https://projects.eclipse.org/projects/technology.collections
https://github.com/jwtk/jjwt
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://www.slf4j.org/license.html
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/
https://hc.apache.org/httpcomponents-client-ga/

